
1

Using Support Vector Machines(SVM) learning
algorithm and Markov Chains to build a spam

classifier

Stuti Chugh

University of Missouri, Department of Mathematics

1

Background Information and Motivation

Spam Emails

Time consuming

Lead to many dangerous phishing activities

Cause harmful viruses to download on our machine

lead to a major breach in user’s privacy

Most email systems have spam filtering algorithms

They learn patterns of similarity in spam emails to predict
whether a certain email is spam or not based on the content
of an email.

Spam classifiers often tend to misclassify emails as well.

if there is an outlier or exceptional email that didn’t match the
spam traits
Here are the two examples of such a misclassifications in my
personal email:

1

Famous Tutoring Email Phishing Scam: a False
Negative

1

Famous Tutoring Email Phishing Scam: a False
Negative

1

Famous Tutoring Email Phishing Scam: a False
Negative

1

Famous Tutoring Email Phishing Scam: a False
Negative

1

Famous Tutoring Email Phishing Scam: a False
Negative

Fraudulent Email Alert Announcement- The University of
British Columbia

Tutoring Scam Explained

https://bulletins.it.ubc.ca/archives/29095
https://bulletins.it.ubc.ca/archives/29095
https://www.berkeleyparentsnetwork.org/recommend/tutors/scam

1

Machine Learning Background

Definition

Two definitions of Machine Learning are offered. Arthur Samuel
described it as: ”the field of study that gives computers the ability
to learn without being explicitly programmed.” This is an older,
informal definition.

Definition

Tom Mitchell provides a more modern definition: ”A computer program is said
to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E.”
Example: playing checkers.
E = the experience of playing many games of checkers
T = the task of playing checkers.
P = the probability that the program will win the next game.

1

Supervised Learning

data set and correct answers are given.

categorized into
Regression:

predict results within a continuous output
Given data about the size of houses on the real estate market,
try to predict their price. Price as a function of size is a
continuous output, so this is a regression problem

Classification :

predict results in a discrete output i.e. map input variables
into discrete categories
Given a patient with a tumor, we have to predict whether the
tumor is malignant or benign. Thus we are doing a binary
classification of a tumor

1

Logistic Regression

A standard supervised learning algorithm can be pictorially
represented as follows:

input variables or input features= x (i)

output variable or target variable= y (i)

(x (i), y (i)) is one of the say, m training examples in the training set

hypothesis function h(x) such that h : X → Y is a good predictor of y
given a corresponding values of x

1

Regression

1 2 3 4 5

5

10

15

20

25

bad fit

bad fit good fit

Thus, for a linear model, if we were to represent the hypothesis function as
hθ(x) = θ0 + θ1x finding the best fitting line in this case implies finding the
best possible values of parameters θ0 and θ1

1

Cost Function and Gradient Descents

J(θ0, θ1) =
1

2m

m∑
i=1

(ŷi − yi)
2 =

1

2m

m∑
i=1

(hθ(xi)− yi)
2 (1)

1 2 3 4 5

5

10

15

20

25

good fit

1

Regression

Need to find derivative of our cost function

Slope of the tangent= derivative at that point and gives a direction to
move towards

make steps down the cost function in the direction with the steepest
descent

learning rate α=size of each step

simultaneously update θi ’s until it converges to a minimum value

θi = θi − α
∂J(θi)

∂θi
∀θi (2)

1

Multiple Features, Feature Scaling, and mean
normalization

x =


area

bedrooms
location
age

 (3)

hθ(x (i)) = θ0 + θ1x
(i)
1 + θ2x

(i)
2 + ...+ θnx

(i)
n (4)

x
(i)
j = value of feature j in the i th training example

x (i) = input(features) of thei thtraining example
m= number of training examples
n = number of features
Thus our multivariable hypothesis looks something like this:

hθ(x) =
[
θ0 θ1 ... θn

] 
x0
x1
...
xn

 = θT x (5)

1

Feature Scaling and Normalization

repeat until convergence:

θj = θj − α
1

m

m∑
i=1

(hθ(x (i))− y (i))x
(i)
j ∀j ∈ (0, n) (6)

Feature scaling involves dividing input values by the range of
the input variable, resulting in a new range of just 1.

Mean normalization involves subtracting the average value
for an input variable from the values for that input variable
resulting in a new average value for the input variable of just
zero.

To implement both of these techniques, adjust your input values as
shown in this formula: xi = xi−µi

si
Here µi is the average of all

values of feature i and si is the range of values(max-min) or the
standard deviation.

1

Sigmoid Function

0 ≤ hθ(x) ≤ 1 (7)

g(z) =
1

1 + e(−z)
(8)

hθ(x) = g(θT x) =
1

1 + e−θT x
(9)

hθ(x) ≥ 0.5 → y = 1

hθ(x) ≤ 0.5 → y = 0
(10)

θT x ≥ 0→ y = 1

θT x < 0→ y = 0
(11)

1

Classification, Cost Function, and Gradient Descent

J(θ) =
1

m

m∑
i=1

Cost(hθ(x (i)), y (i))

Cost(hθ(x (i)), y (i)) = −log(hθ(x)) if y = 1

Cost(hθ(x (i)), y (i)) = −log(1− hθ(x)) if y = 0

(12)

We can compress our cost function as follows:

Cost(hθ(x (i)), y (i)) = −ylog(hθ(x))− (1− y)log(1− hθ(x)) (13)

Repeat

θj = θj −
α

m

∑
i = 1m(hθ(x (i))− y (i))x

(i)
j (14)

1

Regularization

too many features = may lead to overfitting or high variance
less features= underfitting or high bias

J(θ) = − 1

m

m∑
i=1

[−y (i)log(hθ(x (i)))−(1−y (i))log(1−hθ(x (i)))]+
λ

2m

n∑
j=1

θ2j (15)

λ is the regularization parameter

1

Support Vector Machine(SVM) v/s Logistic Regression

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

θᵀx

co
st

fu
n

ct
io

n

logistic Regression

SVM Cost1(θᵀx)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

θᵀx

co
st

fu
n

ct
io

n

logistic Regression

SVM Cost0(θᵀx)

min
θ

m∑
i=1

[−y (i)cost1(θᵀx (i))− (1− y (i))cost0(θᵀx (i))] +
λ

2

n∑
j=1

θ2j (16)

1

SVM vs Logistic Regression

C
m∑
i=1

[−y (i)cost1(θᵀx (i))− (1− y (i))cost0(θᵀx (i))] +
1

2

n∑
j=1

θ2j (17)

hθ(x) = 1 if θᵀx ≥ 0 and 0 otherwise. (18)

1

Kernels

randomly choose three points l (1),l (2), and l (3).
new feature = proximity to landmarks l (1),l (2), and l (3).
Gaussian Kernel is a similarity function

f1 = similarity(x , l (1)) = e

(
− (‖x−l(1)‖)2

2σ2

)

f2 = similarity(x , l (2)) = e

(
− (‖x−l(2)‖)2

2σ2

)

f3 = similarity(x , l (3)) = e

(
− (‖x−l(3)‖)2

2σ2

)

1

Kernels

Given (x (1), y (1)),x (2), y (2)), . . ., x (m), y (m))

Choose l (1) = x (1),l (2) = x (2),. . . , l (m) = x (m)

Given example x:
f1 = similarity(x , l (1))
f2 = similarity(x , l (2))
...
fm = similarity(x , l (m))

This gives us a feature vector as follows:

f =


f0
f1
...
fm

 (19)

1

SVM Cost function and training alogrithm

Our SVM does the following to make predictions:

Hypothesis: Given x, compute features f ∈ Rm+1

Predict ”y=1” if θᵀf ≥ 0

Training:

min
θ

C
m∑
i=1

[−y (i)cost1(θᵀf (i))−(1−y (i))cost0(θᵀf (i))]+ 1
2

m∑
j=1

θ2j

1

Step 1: Preprocessing Emails

Lower-casing

Stripping HTML

Normalizing URLs: All URLs are replaced with the text httpaddr

Normalizing Email Addresses: All email addresses are replaced with the text emailaddr

Normalizing Numbers: All numbers are replaced with the text number

Normalizing Dollars: All dollar signs ($) are replaced with the text dollar

Word Stemming: Words are reduced to their stemmed form. For example, discount, discounts, discounted
and discounting are all replaced with discount.

Removal of non-words: Non-words and punctuation have been removed. All white spaces (tabs, newlines,
spaces) have all been trimmed to a single space character

1

Extracting features: Vocabulary List

create a vocabulary list of most frequently occurring words

chosen words= all words occurring at least a 100 times in the
spam corpus

map each word in the preprocessed emails into a list of word
indices that contains the index of the word in the vocabulary
list

xi ∈ {0, 1} for an email corresponds to whether the i-th word
in the dictionary occurs in the email.

1

Actual Project Result-Matlab

1

Application of Markov Chain in Spam filtering

Before talking about how Markov Chain are used for Spam filtering
We will talk about why they are so successful in natural language

processing in general.
Consider the following 5 simple sentences of the English language:

sentence1=”Sky is blue.”

sentence2=”Blue is my favorite!”

sentence3=”My favorite is green.”

sentence4=”Grass is green.”

sentence4=”Green is my favorite!”

1

Words as States and Their Respective Adjacency Lists

sky is blue

blue is my favorite

my favorite is green

grass is green

green is my favorite

1

Markov Chain for Natural Language Processing

Markov Chain of order 1: current letter determines next letter.

Pr(Xi+1 = j |X0 = k0,X1 = k1, ...,Xt−1 = kt−1,Xt = i) = Pr(Xt+1 =
j |Xt = i)

In English(or any other language), there is proper structure, hence words
are linked thus we can use Markov Chains.

Random Walks using Transition Matrix

Generates a semantically accurate new sentence

as opposed to a completely random selection of 4 words like-”my blue
grass is”

1

Transition Matrix

P =



0 sky is blue my favorite green grass
sky P11 P12 P13 P14 P15 P16 P17

is P21 P22 P23 P24 P25 P26 P27

blue P31 P32 P33 P34 P35 P36 P37

my P41 P42 P43 P44 P45 P46 P47

favorite P51 P52 P53 P54 P55 P56 P57

green P61 P62 P63 P64 P65 P66 P67

grass P71 P72 P73 P74 P75 P76 P77


Pij = Pr{Xn+1 = j(next word)|Xn = i (current word)}.

1

Transition Matrix

P =



0 sky is blue my favorite green grass
sky 1 1 1 1 1 1 1
is 1 1 1 1 1 1 1

blue 1 1 1 1 1 1 1
my 1 1 1 1 1 1 1

favorite 1 1 1 1 1 1 1
green 1 1 1 1 1 1 1
grass 1 1 1 1 1 1 1



1

Transition Matrix

P =



0 sky is blue my favorite green grass
sky 1 1+1 1 1 1 1 1
is 1 1 1+1 1+2 1 1+1 1

blue 1 1+1 1 1 1 1 1
my 1 1 1 1 1+3 1 1

favorite 1 1+1 1 1 1 1 1
green 1 1+1 1 1 1 1 1
grass 1 1+1 1 1 1 1 1



1

Transition Matrix

P =



0 sky is blue my favorite green grass
sky 1

8
2
8

1
8

1
8

1
8

1
8

1
8

is 1
11

1
11

2
11

3
11

1
11

2
11

1
11

blue 1
8

2
8

1
8

1
8

1
8

1
8

1
8

my 1
10

1
10

1
10

1
10

4
10

1
10

1
10

favorite 1
8

2
8

1
8

1
8

1
8

1
8

1
8

green 1
8

2
8

1
8

1
8

1
8

1
8

1
8

grass 1
8

2
8

1
8

1
8

1
8

1
8

1
8



1

Spam Transition Probabilities and Bayes’ Theorem

Treat each email as a sequence of words.

Generate two transition matrices= One containing words
occurring in spam and one for ham.

Given an email find the probability of it being spam using
Bayes’ theorem:

P(Spam|Email) =
P(Email |Spam)P(Spam)

P(Email |Spam)P(Spam) + P(Email |Ham)P(Ham)

P(Spam) = P(Ham) = 0.5 since ’no prior belief’

1

Limitations,Challenges, and Possible Advancements

Vectorization of transition matrix operations

Dealing with words in email that aren’t a state in the
transition matrix by introducing an ’unkown’ row and column
or skipping

Using log of likelihood as a features and using that with
LIBSVM

Multiclass classification of emails into work, school,
promotional, job-related etc.

Markov Chain with order n > 1

Character-level Markovian Spam Filtering

